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Security of Time Stamps: Overview
Time stamps — proofs that electronic records were created at certain time.

e Before 1989 — trusted services that manage the security of time stamps
e 1989 — first attempt to construct a secure scheme [Haber, Stornetta]

e 1991 — proof sketch for a broadcast scheme [Benaloh, de Mare]

e 1997 — proof sketch for a centralized scheme [Haber, Stornetta]

Regardless of the increasing practical importance of time-stamping, no
precise security proofs have been presented.



Our Results

Our initial motivation was to complete the security proof outlined by Haber
and Stornetta [1997].

e \We show that the security condition presented by Haber and Stornetta is
unattainable because it overlooks precomputation

e Inspired by a patent scenario, we derive a different security condition

e We modify the time stamp verification procedure

e We present a security proof for the modified scheme

e We argue the necessity of modifications — there are no black-box reduc-
tions otherwise



Hash-Based Time-Stamping Schemes
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Server S —issues time stamps and publishes roundly digests.
Repository R — a write-only database for publishing roundly digests.
Verifier V' — verifies time stamps.



Server Procedure

During the ¢-th round, S receives a list x4, ..., zm Of k-bit requests and
computes the root ry = Gy(x1,...,xm) of a hash tree and sends r; to R.
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S issues time-certificates ¢ = (x, t, n, z), where n is a ¢-bit identifier, and
z=(21,22,--.,2p)-

Example: The certificate for 1 is (x1,t,0000, (21, 22, 23, 24) ).



Verifier Procedure

To verify a certificate (xz,t,n, z), where n = nin»,...ny, a verifier:
e Obtains an authentic copy of r; by querying R,
e Computes (yg, y1,---,y¢), Where yg := x,andfori =1,... ¢

v = h(zi,yi—1) ifn; =1
v h(yi—1,%) ifn;=20

: def ?
e Checksify, = Fp(z;n;z) = ry.

Example: The verification of(xq, ¢, 0000, (21, 22, 23, 24)):

y2 = h(y1, 22)

r1 =Yoo Y1 = h(z1,21) ys = h(y2,23) ya = h(ys, za) Repository
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Security condition

Adversary (Haber, Stornetta): Adversary Ayg sends requests x1,...,Tm
to S, obtains digests rq, ..., rs form R, and tries to find (x,t, n, z) so that

r & {x1,...,xm} and Fp(z;n;z)=rs € {ry,...,rs}.
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Security condition: Every poly-time Ay g has negligible success probability.



The Security Condition is not Attainable!

The scheme above is insecure against the following behavior of Ayg:

e Ays picks x and zg uniformly at random.
e Ays sends zg = h(x, zg) to S and obtains ¢ = (xzq, t,n, z).
e Ay computes a "fake” certificate (x, ¢, 0||n, zg||2).
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¢ = (z,t,0||n, z0||2)
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By definition, F},(z; O||n; zgl|z) = Fy(xqg;n; z) = r¢+. Hence, the attack is
successful whenever z #= xq (as far as {x1, .

C = (3707 ta n, Z)

., xqt = {zo}).
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If h has reasonable security properties then Pr[x # x0] is non-negligible.



New Security Condition

e Bob, a criminal who steals inventions (in cooperation with .S), computes
r1,-...,Ts (NOt necessarily using GG,) that are stored in R.

e Alice, an inventor, creates a description X 4 of her invention and time-
stamps x4 = H(X 4). Some time later, X 4 is disclosed to the public.

e Bob creates a slightly modified version X g of the description (inventor’s
name should be replaced!) and computes + = H(Xpg)

e Bob tries to find (n, z), so that Fj,(x;n; z) € {r1,...,7rs}.

New security condition: For every poly-time A = (A1, A>) and for every
poly-sampleable distribution D with Rényi entropy H> (D) = w(log k):
PrI6R, a)—A1 (1), XD, (n, 2)—Ax(X, a): Fi,(H(X);n; z) €R] = k<),
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Security

Let 91 C {0, 1}* (set of valid identifiers) and [91= k©(1). 91 can be viewed
as a hashing scheme published by S before the service starts.

New verification procedure: To verify ¢ = (z,t,n, z) for X € {0, 1}*, the
verifier checks if x = H(X), Fj,(xz;n; z) = r¢, and n € .

New definition for the success probability of A:

Pr[(%,m,a)%Al(lk), XD, (n,z2)«—AxX,a): Fj,(H(X);n;z) eR,neN]

Theorem 1. If h and ‘H are collision-resistant, then the time-stamping
scheme is secure relative to every polynomially sampleable D with Rényi
entropy H>(D) = w(log k).
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Proof of Theorem 1: Having A = (A1, A>) with ratio T'(k)/d(k), we con-

i f b ratio (K) _ LO(1) (T(k)\?
struct a collision-finder A’ for h with ratio SRy — O( )(W) :

- A’ calls A; to obtain R, 91, and q;

- A’ picks X, X’ < D and computes (n, z) «—A>(X, a), (0, 2") —A>(X’, a);
- A’ simulates F,(H(X);n; z) and F,(H(X");n'; 2).

-If F,(H(X);n;2) = F,(H(X");n';2), HX) #H(X), and n = n' then A/
checks the h-calls and outputs a collision for h.

We prove (Lemma 1) that if x # 2’ and F},(z;n; z) = Fi(2';n; 2") then
the h-calls of F},(z; n; z) and F},(z; n; ') comprise a collision.

It can be shown (Lemma 2) that the success of A’ is at least

32(k) (D)) _ 9°(K) ()
20 ° ~ T2k " S
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Security Proofs and Oracle Separation

Semi black-box reduction: ¥y Ao3poiA1: AL breaks TS = Al breaks h.
Black-box reduction: 3,0;SVA: A breaks TS" = SA breaks h.

Separation: If A is collision-resistant relative to O but TS" is insecure rela-
tive to O, then there exist no black-box reductions.

Strong separation: If in addition, © = = for a poly-time =, then there exist
no semi black-box reductions.

For more details: Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibil-
ity between cryptographic primitives. In TCC’04, LNCS 2951, pp.1-20. Feb. 2004.
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Necessity of the Modified Verification

We prove that semi black-box reductions are insufficient for proving the
security of the unmodified time-stamping scheme, based on the collision-
resistance of h (and H).

We construct an oracle O relative to which there exists a collision-resistant
hash function h©: {0, 1}%* — {0, 1}* and a poly-time (A{, AS) with

Pr[r < A?,x —D,(n,z) — Ag)(a:,r): Foo(z,n;z) =r]=1

for every distribution D on {0, 1}*. Hence, h© makes the unmodified time-
stamping scheme insecure. (Rules out black-box reductions)

We construct a hash function oracle $;:{0,1}2* — {0, 1}*, which is
collision-resistant relative to itself but $,; can be used to break the time-
stamping scheme that uses $),.. (Rules out semi black-box reductions)
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Construction of O

O comprises a random function H < § and responds to:

e H-queries: oninput (z1,xo) € {0, 1}2% return H(xz1,xz5) € {0, 1}*.

e Aq-queries: on input 1% return the root r;, of the complete Merkle tree
M., the leaves of which are all £-bit strings in lexicographic order.

e A>-queries: oninput z € {0, 1}* find z € ({0, 1}*¥)* (based on M;) so
that Fiy(x; x; z) = r;, and output (x, z).

E
O
g _/"" _XED “/ Third layer pair

o000y otooy
e
/ \ / \ / \E\_ o _’://:\K_ \/ Leaf sibling pair

OOO 001 010 011 100 101 110 111
14



We define § as a set of all functions H, such that for all &:
e all non-leaf vertices in M, contain different elements of {0, 1}%

Choice of H

e all sibling-pairs in M, are different.

-

Pairs in the
Merkle tree
M,

\

Hj,
\

Injection

\_

other pairs
in
{0, 1}

=

Random
function

J

{0,1}*

Lemma 5: Every collision-finding adversary A© for H that makes polyno-
mial number of oracle calls, has negligible success.
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Construction of $

The oracle O does not yet rule out semi black-box reductions — computa-
tion of O requires an exponential number of H-calls, and hence © # =,

We embed O, into a hash function $45: {0, 1}8% — {0, 1}4*:
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Open question 1: More Efficient Reductions?

/ 2
The reduction obtained is poly-preserving: ?,((]f)) = xO). (%) :

Practical guarantees are limited: If the time-stamping scheme is broken

with ratio % = 232 (very efficiently!) then the reduction implies that h

with 160-bit output can be broken with ratio 281, which is trivially true.

The reduction gives practical security guarantees only in case £ > 400 —
much larger than in the existing schemes.

Question: Are there more efficient reductions?
k)

For example, linear-preserving reductions: ?,/((]f)) = kO). %.
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Open question 2: General black-box constructions?

Is it possible to construct a hash function H = P" so that if & is collision
resistant then the hash-based time-stamping schemes constructed from H
are secure?

Can we prove that there are no general black-box reductions of secure
time-stamping schemes to collision-resistant hash functions?

An obstacle: If an oracle O is able to compute the root of the complete
Merkle tree M,f for any (computable) f, then O can be “abused” to find
collisions for any hash function.
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Open guestion 3: Stronger security conditions?
In our security condition, A has unconditional uncertainty about x <— D.

In practice, it is possible that A; has some partial knowledge v = f(x)
about x (e.g. ciphertexts or signatures).

This suggests conditions of type: If z can be time-stamped based on y =
f(x), then z can be efficiently computed based on y.

Main problem:

o 1 = h(z, zg) (Where zg —gr {0, 1}¥) is partial knowledge about z and
Is sufficient to time stamp x.

e If h is one-way, x cannot be computed from .
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